
Int. 1. Solids Structures. 1977. Vol 13. pp. 1203-1217. Pergamon Press. Pnnted in Great Britain

ON NON-ISOTHERMAL ELASTIC-PLASTIC
AND ELASTIC-VISCOPLASTIC

DEFORMATIONS

R. DE BOER

Universitat Essen, W. Germanyt

(Received 31 August 1976; revised 20 April 1977)

Abstract-Starting with the equations of balance of energy and the Clausius-Duhem inequality the
non-isothermal behavior of elastic-plastic materials without and with viscous properties is described. All
quantities in the equations of balance of energy and in the Clausius-Duhem inequality are expanded in
series. This procedure leads to the development of restrictions and stress-strain-relations, which contain as
special cases the constitutive equations of classical plasticity and viscoplasticity.

I. INTRODUCTION

The thermodynamical behavior of continua is described by the conservation equations and the
constitutive equations in the framework of classical continuum mechanics, Invariance require
ments and the Clausius-Duhem inequality act as control quantities. Whereas the equations of
balance and certain invariance conditions may be considered as valid, the form of the
Clausius-Duham inequality is criticized principally (see, e.g. Perzyna [11]). A motivation for the
use of the Clausius-Duhem inequality to derive restrictions on the constitutive equations is
surely given by virtue of getting important results for constitutive equations of certain material
behavior, as e.g. in the field of fluid mechanics and in elasticity theory (see Fung[2]), In this
paper we also assume the validity of the Clausius-Duhem inequality to derive restrictions on
the constitutive equations for elastic-plastic materials without and with viscous properties.

Important progress in the development of constitutive equations has already been derived for
elastic-plastic materials (Green-Naghdi[3], Lee[5], Naghdi-Trapp[8]) and for a certain class of
elastic-viscoplastic materials (Perzyna[ll]) in connection with a general nonlinear theory. The
aim of this paper is to extend the development of constitutive equations and restrictions for
elastic-plastic behavior of materials with and without viscous properties, where we also include
such a viscoplastic behavior as creep. For a special class of viscoplastic deformations we
consider unloading which leads to a different approach of the derivation of constitutive
equations for viscoplastic behavior. We regard the theory of elastic-plastic materials with and
without viscous properties as a "rate-type" theory. For our purposes therefore it is necessary to
develop the change of energy and entropy in a Taylor series expansion. Using the series
expansion, we obtain various cases of the equation of balance of energy and of the Clausius
Duhem inequality. We assume that all cases have to be satisfied by the constitutive equations,
describing the elastic-plastic and elastic-viscoplastic behavior of the material.

Before we start with the description of non-isothermal deformations of elastic-plastic
material, the content of the paper should be indicated. Basic equations are given in Section 2, in
which we also consider the development of the change of energy and entropy in a Taylor series
expansion. The full system of constitutive equations describing the behavior of an elastic
plastic material without and with viscous properties is given in Sections 3 and 4. Section 3
contains the description of inviscid elastic-plastic materials. One can show, that in the loading
criteria a basic inequality is involved which allows the derivation of an explicit form of the
constitutive equation for the plastic strain rates. In special cases, this form of the constitutive
equation leads to the normality of the plastic strain rates in stress space. Section 4 describes
elastic-plastic materials with viscous properties,

2. BASIC EQUATIONS

Let us consider a body 9B with material particles X and identify the material particles X
with its position X in a reference configuration ~. All following quantities that shall be

tPresend address: Stiftung Volkswagenwerk scholar, University of California, Berkeley, California, U.S.A.
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introduced are referred to this reference configuration ~. The body may deform and conduct
heat. The motion of the body is described by a smooth vector function

x = X(X, t),

where x is the spatial position of g(1 at time t.
The deformation graditent F is determined by

F=VX(X, t),

(2.1)

(2.2)

where the gradient V is computed with respect to the material coordinates X. keeping t fixed. It
is assumed that

5"= detF> O.

The condition for the balance of linear momentum inside the body in local form is

div (FS) +pb = pi

(2.3)

(2.4a)

with the symmetric Piola-Kirchhoff stress tensor S(X, t) and the body forces per unit mass
b(X, t). The mass density in the reference configuration fn is denoted by p. The operator div
refers to the material coordinates X. The superposed dot denotes the time derivative with
respect to the time t keeping X fixed. The stresses also must satisfy the boundary conditions

FSn = p, (2.4b)

where n is the outward unit normal to the surface in the reference configuration and p the
surface force vector, measured per unit area in the reference configuration. The theory of
elastic-inelastic bodies may be a theory of increments (Green-Naghdi[3], Koiter [4]). Therefore,
the increments of stresses and forces also must fulfill the eqns (2.4). We introduce the
balance of energy (the first law of thermodynamics) in local form:

(2.5)

The first law of thermodynamics states that the change of the internal energy l1£ = l1£(X, t) of a
thermodynamic system in the time interval t2 - t t. is equal to the sum of the mechanical work
performed, l1 w = l1 w(X, t) and of the heat supplied in the time interval t2 - tt. l1q = l1q(X, t). l1£
is the difference of the internal energy at time t2 and t1(l1£ = pE(X, t2) - pE(X, t1). where £ is the
internal energy per unit mass. The Clausius-Duhem inequality (in further considerations called
C-D inequality) may be written as:

l1q
A'YI>_a.,- ()' (2.6)

where l11J is the difference of entropy at time t2 and at tl(l11J = PT/(X, t l) - P1J(X, t2» and where 71
denotes the entropy per unit mass. The quantity (l1q/8) = ([l1q(X, t)]/[8(X, t]) is the entropy flux and
(}(X, t) is the local absolute temperature which is assumed to positive. All introduced equations
must be satisfied for every particle in g(1. Further, we shall assume that all quantities satisfy the
invariance conditions under superposed rigid body motions. For further considerations we need
the explicit form of the mechanical work and of the heat. The mechanical work is given by

it2

l1 W = tr(SE)dt,
II

where E(X, t) denotes the Langrangian strain tensor

(2.7)

(2.8)
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FT is the transpose of F and 1 the unit tensor. The heat is expressed by

I,
/2

dq = - (div q- pf)dt
I,

and the entropy flux

1205

(2.9)

(2.10)

The heat flux vector q(X, t), referred to the reference configuration, is denoted per unit mass
and unit time and f(X, t) is the heat supply per unit mass and unit time. t

With (2.7) (2.9) and (2.10) the equation of balance of energy and the CoD inequality «2.5) and
(2.6)) can be written as .

pe(X, t2) - pe(X, tl) = ('2 [tr(SE) - div q+ pf] dt,
J"

(2.11)

(2.12)

In this form (2.11) and (2.12) may be useful if one regards closed cycles in the stress-or
strain space. For our purpose, however, we express all quantities in (2.11) and (2.12) by a
Taylor series expansion. We start from the reference configuration at time to. For t = to the
quantities S = S = 0, E =Eo, 0 = 00 , q= qo =0, and f = fo= 0 may be given. An external agency
takes the body to the state at time t l and to the state at time t2 near the state at time t l . Then; by
a Taylor series expansion we obtain, assuming that all quantities are continously differentiable
with respect to the time:

D':j: stands for the n-th material time derivative. Also

tr(SE) = tr(SE)J I, +f D'tr(SE)J 1,·(t2 - tl)" J"
'=1 n.

d· . d' .J ~ D' d' .J ( )' 1IV q = IV q I, + LJ IV q 'I' t2 - t I "
,=1 n.

and

f fJ ~ D'( f)J ' I-0=-0 +~ -0 ·(t2 -t l ) ,.
II n-I '1 n.

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

tUsually. the heal flux vector and the heat supply are denoted by q or h. respectively. It seems to be more convenient in
view of the Taylor series expansion to use the introduced notation.

tOnly in the series expansion we use the symbol Dn
. Later we replace Dn by dots.
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Hence, we obtain the rate of energy and entropy using eqn (2.11) and eqn (2.12) in explicit
formt

~ Dn-1 . ( )n I- P £.J r' t2 - t) I'
n=l n.

(2.20)

(2.21)

We postulate that an elastic-inelastic material has to fulfil all basic equations described in
Section 2 as well as the equation of balance of energy and the CoD inequality.

Starting from the equation of balance of energy and the CoD inequality (2.20) and (2.21) we
can derive important special forms for various cases:

Case (a). Taking the value n equal one we derive from (2.20) and (2.21):

pi - pE - div 4+ tr(SE) = 0, (2.22)

(2.23)

For further considerations it is convenient to introduce the Helmholtz free energy function per
unit mass:

Then, if we use E from (2.24) in (2.22) we obtain

pi - p('Ii + i,9 +1)9) - div 4+ tr(SE) = O.

Substituting i, form (2.25) into (2.23) the CoD inequality takes the following form:

" . I
- p(I/J + 1)9) + tr(SE) - 48"g ~ 0,

(2.24)

(2.25)

(2.26)

where g stands for grad 9. (2.25) and (2.26) are the well known forms of the equation of balance
of energy and the C-D-inequality.

Case (b). Taking into account eqn (2.22), we get from (2.20) the equation of balance of
energy in the following form (n = 2):

pi - p(i{! +2M + ij9 + 1)th - div q+ tr(SE)' = o. (2.27)

In this equation the internal energy function is replaced by the Helmholtz free energy function
I/J(see eqn (2.24». Since the term with n = I in C-D-inequality (2.21) is assumed to be
non-negative (eqn (2.23», *the entire term up to n = 2 in (2.21) is surely non-negative, if we
assume

.. d' (4)' (i) . 0fJ'TI + IV 8" - p 8" ~ . (2.28)

tWe suppress the index t I from various expressions.
*The introduction of this strong restriction is not necessary, as we will see, for the description of viscoplastic materials (see

Section 4.2).
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With the substitution of ij from (2.27) we are able to express (2.27) in the following form

1207

pi' - p('1r +2M +"19) + tr(SE)· - div q+8div (~) .- 8p(~) '?; 0. (2.29)

In general, for a complete description of elastic-inelastic materials in the framework of
non-isothermal deformations, higher terms in the Taylor series expansion may be important.
For the development in this paper however, we limit our further considerations by the forms
(2.25) and (2.26), (2.27) and (2.29) respectively.

3. ELASTIC-PLASTIC MATERIALS
We consider elastic-plastic materials which may be characterized by a set of constitutive

eqns (3.1)-(3.18):

l/J = ~(E', E", p, K, 8, g)

"1 = 1j(E', E", p, K, 8, g)

S = S(E', E", p, K, 8, g)

it = q(E', E", p, K, 8, g) (3.1)

where p is a second order tensor and K a scalar function, which depend on the plastic state and
which describe kinematic and isotropic hardening. E' stands for E- E", whereas E" is the plastic
part of the strain tensor.

In general, the entire strain tensor or the rates of the strain tensor which arise from the
kinematics of the given body motion, and the temperature and the temperature gradient, were
considered as independent state variables. Since we have also introduced the plastic part of the
strain tensor the second order tensor p and the scalar function K as independent thermodynamic
state variables, we need constitutive equations for these quantities.
tities.

In plasticity, it is not sufficient to assume equations only for E", p and K. Rather, we have to
introduce a condition which indicates that plastic deformations will occur. Moreover, additional
conditions are necessary to guarantee plastic flow. All these conditions belong to the con
stitutive equations in plasticity. Mathematically, this is formulated in (3.2) to (3.18).

If the following condition (3.2)-called the yield or loading function-is satisfied, plastic
deformations can take place:

F(S, p, K, 8) =0.

If

F(S, p, K, 8) <°
no plastic deformations will occur.

To guarantee plastic flow during the thermodynamic process

must be valid. Starting from (3.4), we derive certain loading criteria. When

F= °and F>O, then E" ~ o,,;.~ 0, K~ 0,

when

F = °and F< 0, then E" = 0, ,;. = 0, K= 0,

when

F = °and P= 0, then E" = 0, ,;. = 0, K= 0.

(3.2)

(3.3)

(3.4)

(3.5)
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(3.6)

The requirement (3.5a) contains in connection with (3.4), that

(3.7)

This inequality is important to derive an explicit form of the constitutive equation for the
plastic strain rates, as we will soon see. Now, we postulate constitutive assumptions for the
plastic part of the strain tensor and for the introduced quantities p. and K as follows:

E" = E"(E', E", p., K, fJ, g, S, 8)

p. = ~(E', E", p., K, fJ, g, S, 8)

K = ,i"(E', E", p., K, fJ, g, S, 8). (3.8)

Bearing in mind that classical plasticity theory is a time independent theory, we can specify
(3.8) by

E" = A(E', E", p., K, fJ, g)S + B(E', E", p., K, fJ, g) 8

p. = I(E', E", p., K, fJ, g)S +O(E', E", p., K, fJ, g) 8

K = tr[C(E', E", p., K, fJ, g)Sl + D(E', E", p., K, fJ, g) 8 (3.9)

where A and I are fourth-order tensors; B, 0 and C are second-order tensors, and D is a scalar.
The loading criteria (3.5) give some restrictions because of the assumptions (3.9). First let us

regard the constitutive assumption (3.9a). From the loading requirements (3.5b) and (3.5c) we
obtain, that E" dissapears when F:::; O. We replace therefore in (3.9a) A and B by

aF aF
A= M as and B = M afJ

with M(E', E", p., K, fJ) as a second order tensor. Then we derive from (3.9a) with (3.6)

E" =M(F).

The symbol (F) is defined as follows

(p) = { ~ for ~ :::; 0
Ffor F>O.

(3.10)

(3.11 )

(3.12)

Furthermore, the loading criteria (3.5a) and (3.5b) yield that p. is equal zero, if P:::; 0, or in view
of (3.11), if E" disappears. Therefore we set in (3.9b)

1= c A and 0 = c B, (3.13)

where c is a constant value, which describes material properties. Then we obtain from (3.9b)

or with (3.9a)

p. = c(AS + B8) (3.14)

(3.15)
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which guarantees that jJ. vanishes when E" is equal to zero. The loading criteria (3.5b) and (3.5c)
imply also that K disappears if Fs 0 or E" is equal zero, respectively (eqn 3.11). A simple way
of achieving this result from (3.9c) is to set in (3.9c)

C=BA, D= tr(BB)

with B(E', E", p., K, 8) as a second-order tensor. Then we derive from (3.9c)

K = BAS + tr(B B) 8
or with (3.9a)

K = tr(B E''). (3.16)

In this form (3.16) K disappears if E" vanishes which is in accordance with the loading criteria
(3.5)

Next, we are concerned with the determination of M in (3.11). Inequality (3.7) leads with
(3.15), (3.16) and (3.11) to

- (F)t{ (c ;:+B :~ M] > O.

This inequality is satisfied if we choose

(3.17)

where h is a positive scalar invariant, which can be determined by eqn (3.4). The final form of
the constitutive equation for the plastic part of the strain tensor is then given by (3.15) and
(3.17)

If we choose F in such a way that

aF aF aF
c -+-B=-a-ap' aK as'

(3.18)

(3.19)

where a is a positive quantity, then we derive the form of the constitutive equation for E" in the
infinitesimal theory (see Naghdi[7])

(3.20)

However, in (3.20) no limitation on the magnitude of the deformations has been introduced. The
stress-strain relation (3.18) or (3.20) are the simplist forms that we can obtain if we consider
linear relationships between the rates (see eqn (3.9». For infinitesimal deformations, eqn (3.20)
leads in the isothermal theory to the well known form of the plastic part of the strain tensor,
first given by Melan[6] by considering the uniqueness theorem (see also Koiter[4]). Now we
discuss restrictions that are imposed by the thermodynamical requirements. Following the usual
procedure we obtain from (2.26) with (3.1)

and the inequality

atfr=oag , (3.21)

tr[(s-p a~ _pa~ c-patfrB)E"_.!qg~O,
aE" ap' aK 8 (3.22)
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if we consider (3.15) and (3.16). With the results (3.21), the balance of energy (2.25) reduces to

p; - pr,0 - div q+ tr [ ( S - P:;/ - p :: c - p::H)E"J= O.

In the special case, if ~ is independent of E", Il and K, (3.22) and (3.23) simplify to

. I
tr(SE") - 8"qg ~ 0,

p; - pr,0 - div q+ tr(S'E") = o.

(3.23)

(3.24)

(3.25)

Inequality (3.22) or (3.24) give restrictions on the loading function F. If we substitute E" by
(3.18) we obtain from (3.24)

I [ (aF.) aF'J [( aF aF )] I.-- tr -S +- 0 tr c-+-H S --qg~Oh as ao all aK 0

or for q equal zero, omitting the positive quantity h and the positive value in the first bracket,

-t{(c::+::H) S] ~ 0, (3.26)

which clearly shows, that F must be chosen in such a way that inequality (3.26) is fulfilled.

4. ELASTO-PLASTIC MATERIAL WITH VISCOUS PROPERTIES

4.1 Introduction
Before developing the constitutive equations and restrictions, it seems necessary to analyze

the viscoplastic behavior of the materials from the physical point of view. We do this because
the viscous behavior in the plastic region is complex and the possibilities to combine the
viscous with the elastic and plastic properties are many. We consider first the behavior of the
material under dynamic loading. Then, the beginning of plastic yield will be delayed. The delay
depends on the strain rate. Therefore, plastic behavior is influenced by the rate of strain and
hence a viscous effect result. This behavior has been studied in recent years in several
papers[lO, 11], particularly in view of general theorems[I], and has led to the theory of rate
sensitive materials.

Steel, at high temperature, and other materials such as clay show other viscous properties.
Beside elastic and plastic, viscous effects appear. The entire strain can be decomposed into an
initial strain which contains the elastic and plastic properties, and into the viscous strain[9]. The
time history of the strain can be decomposed into a primary, secondary and tertiary region[9].
The secondary region is of special interest because the strain depends linearly on time. The
description of the behavior of the material in the secondary region remains difficult because the
rate of the strains depends non-linearly on the stresses. The following thermodynamic con
siderations are restricted to such viscoplastic materials described above.

4.2 Elastic-viscoplastic material
A material may be defined as an elastic-viscoplastic material, when it is described by a set of

constitutive equations in the following sense:

r/J = ,fr(E', E"v, a, 8, g),t

1/ = i1(E', E"v, a, 0, g),

S = S(E', E"v, a, 0, g),

q= q(E/, E"v, a, 8, g), (4.1)

tWe can also introduce an second order tensor which describes anisotropic effects. as in in viscid plasticity. but for
simplicity we suppres this.
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where E"V denotes the viscoplastic part of the strain tensor and a a scalar value function. Both
values, E"V and a, must be determined by constitutive equations, which will be formulated in
the next considerations. E' stands for E - E"v

•

As in inviscid plasticity we have to introduce a condition which indicates when viscoplastic
deformations can take place. Viscoplastic deformations can occur, if the following condition is
fulfilled

L(S, a, 8) = GCE"v
, a), (4.2)

where G is a positive function of E"V and a which is equal to zero when E"V reaches zero.
Equation (4.2) is in accordance with the observation of the physical behavior, described in
Section 4.1, that the beginning of viscoplastic flow is delayed and the delay depends on the
strain rates. To guarantee viscoplastic flow the condition

t (aL s)+aL 8= tJEE""V) aG .. _ aL .
r as a8 '\aE"v + aa a aa a (4.3)

must be valid. Following the considerations in inviscid plasticity (Section 3) we cannot derive
restrictions on the nature of the constitutive equation for the viscoplastic part of the strain
tensor, because as known from experimental results, the loading conditions

(
aL.) aL·

tr as S + a8 8 ~° (4.4)

always lead to viscoplastic deformations. However, in the limit when E"V disappears, the
following loading criteria must be valid:

L = °and L> 0, then E"V ~ 0, a~ 0,

L = °and L< 0, then E"V = 0, a = 0,

L = °and L= 0, then E"V = 0, a = 0,

where

Now, we introduce the constitutive assumptions for E"V and a.

E"V = E"V(E', E"v
, a, 8, g),

E"v = E"v(E', E"v, a, 8, g, S, 8)

where we specify (4.7b) by

E"V = R(E', E"v, a, 8, g)S +T(E', E"v, a, 8, g) 8,

with Rand T as fourth- and second-order tensors.
Furthermore

a= &(E', E"", a, 8, g),

a = &(E', E"v
, a, 6, g, S, 8).

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

The introduction of the constitutive equations for the viscoplastic strain is necessary in the
above sense, because the constitutive equations for the description of the viscous properties
must be time-dependent.
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Similar to the considerations in Section 3 we set

Ii = tr(W E"V), a= tr(VE"V), (4.10)

where W and V are second-order tensors, which depend on E', E"v, a, 8, g. The loading
condition (4.5a) requires in connection with (4.10) that for E"v = 0

( aG aG v ) Eoo"v 0w+ ali > . (4.11)

This inequality (4.11) will be used to derive an explicit form for E"v. First however, we simplify
eqn (4.8). The constitutive eqn (4.8) has to describe the loading condition (4.5c). Therefore
we set

aL
R=N as'

aL
T= N a8' (4.12)

where N is a second-order tensor. With (4.12) we obtain from (4.8)

E"V = N[tr (aL s) + aL 0]as a8' (4.13)

The second-order tensor N will be determined in such a way that inequality (4.11) is always
valid. This is surely given, if

(4.14)

with m as a positive scalar value. Equation (4.13) yield with (4.14) the final form of the
constitutive equation' for E"v:

E"V =.l [t j aL s) + aL 0] (E+ aG V)
m '\as a8 aE"V ali .

If we require that

with b as a constant value, then the constitutive equation can be replaced by

E"V =.!!.. [tjaLS) aL 0] aL
m '\as + a8 as'

(4.15)

(4.16)

(4.17)

as pointed out in Section 3.
If we extend (4.17) in such a manner that in accordance with the constitutive assumptions

(4.8) and the above requirements

E"V = I!. aiP(L) [t j aL s) +aL 0] aL +I!. iP(L) [ a
2
L S+ a

2
L 0] (4.18)

2 aL '\as a8 as 2 asas asa8 '

then by integration, eqn (4.18) can be written as

E"V = I!. "I,,(L) aL
2'1' as' (4.19)

which has the form assumed by Perzyna[lO]. In this equation {3 is a material dependent
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number, and t/J(L) a nonlinear function. Comparing (4.18) and (4.17) the nonlinear function t/J(L)
must vanish for L=O and must have a positive slope. The postulate (at/J/aL»O is also
necessary to fulfill general theorems in viscoplasticity ([1]).

If the elastic-viscoplastic material loses its viscous properties, then the viscoplastic strain
rate (4.19) must be equal to the plastic strain rate, when L.= F = O. Perzyna concludes in [11]
that in this limit the coefficient !(3t/J(L) has to yield an undetermined value.

From the C-D inequality we can derive restrictions on the loading function. Starting with
(4.1) we obtain from the C-D inequality in case a (2.26)

and the inequality

a~
S = PaE" a~=O

ag , (4.20)

tr[(S - P~,E'v - P~.aW)E"V
] - ~ qg ~ 0,

whereas we have used eqn (4.10). The balance of energy simplifies to

. '0 d" [(s a~ a~W)E'"VJ 0pr - fJfI - tv q + tr - p aE"v - aau = .

(4.21)

(4.22)

Since in the limit E"V equals zero the expressions in the brackets vanish, no restrictions upon
the viscoplastic deformations can be obtained in case a. Therefore, we proceed to case b. With
the results (4.20) the C-D-inequality in the form (2.27) yield after some calculations

~(P;-IriIO - div q) +t{(S- Pa~~v - p;:W)EIIVJ

[( a~ a~ ),,"V] [I. J'+tr S-PaE"v-P au V E -8 ~qg ~O,

and with (4.22)

6 • •. .. . .
-fj tr[(S - pl/J,E'v - pl/J.a W)E"V]+ tr[(S - pl/J,E'v - pl/J.a W)E"V]

+ tr[(S- P~,E'v -p~.aV)E"V]-o[~qgl ~O.

Taking the limit as E"V -+ zero, inequality (4.24) reduces to

[(S a~ a~V)E""V o[ I . J' 0tr - PaE"v- Pau - ~qg ~ .

(4.23)

(4.24)

(4.25)

If we assume that ir is independent of E"V and u, and q and the time derivations of q vanish,
then we obtain with (4.15)

I [ j aL .) aL.] [( aO ao) Jm t'\as S + ao () tr aE""'+ ali V S ~O.

Omitting the positive values m and in the first bracket, inequality (4.26) leads to

which contains a restriction on the function O.

(4.26)

(4.27)
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4.3 ELASTIC-PLASTIC-VISCOUS MATERIAL
An elastic-plastic-viscous material may be characterized by the following set of constitutive

equations.

l/J == ¢i(E', E", El', K, lp, 8, g),t

71 == 1j(E', E", El', K, cp, 8, g),

8 == S(E', E", El' , K, cp, 8, g),

q== q(E', E", El', K, cp, 8, g). (4.28)

El' stands for the viscous part of the strain tensor and cp is a scalar value function. E' is equal
E - E" - El'. Viscous deformations can take place, if the following condition is satisfied

1(8, Ko, cp, 8) == P(El', q;), (4.29)

where, in general, Ko is prescribed by the constitutive eqns (3.16) and (3.13) respectively.
However, for several materials as steel under high temperature, the quantity Ko can be
considered as a constant. We postulate, that P is always positive and vanishes if EV and q; are
equal zero. Besides, the following condition must also be valid:

(
al .) al· aP .. v ap.. at·tr -8 +-8 ==-. E +---;-cp --cp,
as a8 aEv acp acp

when Ko is a constant. The loading conditions

f == tr (al s) + at 11 2: 0
as a8 <:

(4.30)

(4.31)

lead always to viscous deformations, if (4.29) is satisfied, as experimental results show.
Therefore we proceed to the state where EV disappears. Hence

t = 0 and f> 0, then Ev
,.; 0, Iii"; 0,

1= 0 and f < 0, then EV = 0, Iii = 0,

t =0 and f =0, then EV =0; Iii =o. (4.32)

In the following considerations we suppress the determination of the plastic part of the
deformations because this has been done in Section 3. For the viscous part of the deformations
we introduce the following constitutive equations:

EV == EV(E', E', El', K, cp, 8, g),

EV= EV(E', E", EV, K, cp, 8, g, S, 6).

Equation (4.33b) may be specializied by

(4.33)

(4.34)

with K and Q as fourth- and second-order tensors which depend on E', E", EV
, K, lp, 8, g. As

pointed out in Section 3 we set

q; = tr(yEV
), ;p = tr(Z EV

). (4.35)

The second-order tensors y and Z depend on E', E", EV
, K, cp, 8, g, the condition (4.30) leads

t As in Section 3 we can also include a second order tensor which describes anisotropic properties.
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with the loading requirement (4.32a) to the following inequality for the state EV equal zero:

ap·· ap ..
-.- EV +-lp > o.
aEv aq;

Inequality (4.36) leads with eqn (4.35b) to

(4.36)

(4.37)

Now, we proceed to give an explicit form for Ev
• Following the previously discussed develop

ments in Section 3 and 4.2 we obtain for EV
:

EV = U [tr (af s) + af 8]as a8' (4.38)

where U is a second-order tensor, depending on E', E", EV
, K, lp, 8, g. With this equation we can

describe the loading state (4.32b, c). To fulfill inequality (4.37) we set

EV = l [tr (af s) + af 0] (a~ + ap z),
n as a8 aEv aq;

(4.39)

with n as a positive scalar value. This final form for EV can be replaced by the following
equation, if we assume that

(4.40)

where d is a constant value. Then we obtain from (4.39) with (4.40)

(4.41)

Above all, if we follow the development in Section 4.2, we can derive a constitutive equation
for EV

:

(4.42)

In this equation 'Y is a material dependent number and "'(f) a nonlinear function, which
vanishes, if f is equal zero, and which has a positive slope. The constitutive eqn (4.42)
contains Nortons law (see [9]). Next~we are concerned with the derivation of restrictions on
the viscous deformations, based on the C-D inequality. In case a the C-D inequality (2.26) yield
with (4.28)

and the inequality

a~
s= p aE" a~=oag , (4.43)

tr[(s-p a~ -pa~H)E"J+t{(s-p a~ _pa~Y)EvJ_lqg>o (4.44)
iJE" iJK iJEV iJlp 8 -.

The balance of energy reduces in case a to

SS Vol. 13, No. 12-C
(4.45)
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For the previously discussed state tv equal to zero, inequality (4.44) gives no restrictions upon
the viscous deformations. Therefore, we regard case b in Section 2.

Considering the results (4.43) we obtain after some calculations from the C-D inequality in
the form (2.27), if we use (4.45) and regard the state tv equal to zero

- ~ tr [(s -p aJ; - paJ;H)t"+ {tr [(s_p aJ; - paJ;H)t"}·() aE" aK aE" aK

[( aJ; aJ;) .. ] [ 1 J'+tr S-p--p-Z EV
-() -nzqg ~OaEv alp () . (4.46)

We assume that the sum of the first two terms on the left side of inequality (4.46) is always
positive. Then inequality (4.46) is satisfied, if

[( aJ; aJ; )"] [1 J'tr S-p--p-Z EV -8 -nzqg ~oaEv alp 8 .

Recalling the result (4.39), inequality (4.47) gives restrictions in view of the function P.

(4.47)

5. FIN AL REMARKS
Within the framework of non-isothermal and finite deformations, basic constitutive equations

of plastic materials without and with viscous properties are developed in this paper. This seems
to be necessary, because the inviscid plasticity theory and the viscoplasticity theory contain
some open questions with regard to the formulation of the constitutive equations: e.g. the
plastic strain rates depend on a second-order tensor which is unknown (see [3], [11]). SiRce the
restrictions in plasticity theory without and with viscous properties, which are needed to obtain
consistent constitutive equations, are only valid for infinitesimal or isothermal deformations
(see [1,4,6,8]), it is not possible to give an explicit form of the plastic part of the strain tensor.
Therefore, in this paper a basic inequality is derived from the loading criteria. With the help of
this inequality we can give an explicit form of the constitutive equation for the plastic strain rates
which is similar to the concept of plastic potential in the infinitesimal inviscid plasticity theory. In
viscoplasticity theory we can derive, in some special cases, a similar expression for the second time
derivative of the inelastic part of the strain tensor.

The basic constitutive equations of the inviscid plasticity theory contain the results of the
infinitestimal theory [12] and the constitutive equations in viscoplasticity theory the constitutive
equation for "rate-sensitive" materials (see [10]) and Norton's law (see [9]).

It is well known that the Clausius-Duhem inequality gives some restrictions in view of the
constitutive equations. For our purpose we have to expand all quantities in the balance of energy
and in the C-D inequality in series. This procedure leads in our development to restrictions only on
the loading functions. The use of the Taylor series expansion seems to be new.
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